Kaip koeficiento taisyklę konvertuoti į produkto taisyklę?
Kaip koeficiento taisyklę konvertuoti į produkto taisyklę?

Video: Kaip koeficiento taisyklę konvertuoti į produkto taisyklę?

Video: Kaip koeficiento taisyklę konvertuoti į produkto taisyklę?
Video: Quotient rule from product & chain rules | Derivative rules | AP Calculus AB | Khan Academy 2024, Gruodis
Anonim

The koeficiento taisyklė gali būti vertinamas kaip taikymas produktas ir grandinės taisyklės . Jei Q(x) = f(x)/g(x), tai Q(x) = f(x) * 1/(g(x)). Galite naudoti gaminio taisyklė norint atskirti Q(x), o 1/(g(x)) galima diferencijuoti naudojant grandinės taisyklė kai u = g(x) ir 1/(g(x)) = 1/u.

Be to, kokia yra koeficiento taisyklės formulė?

The koeficiento taisyklė yra formulę paėmus išvestinį a koeficientas dviejų funkcijų. The formulę teigia, kad norint rasti f(x) išvestinę, padalytą iš g(x), reikia: Paimti g(x) padauginus iš f(x) išvestinę. Tada iš to sandaugos turite atimti sandaugą iš f(x) padauginto iš g(x) išvestinės.

Taip pat žinokite, kas yra 1 išvestinė? The Darinys nurodo funkcijos nuolydį bet kuriame taške. Yra taisyklių, kurių vadovaudamiesi galime rasti daugybę dariniai . Pavyzdžiui: pastovios reikšmės (pvz., 3) nuolydis visada yra 0.

Darinys Taisyklės.

Bendrosios funkcijos Funkcija Darinys
Pastovus c 0
Linija x 1
kirvis a
Kvadratas x2 2x

Žmonės taip pat klausia, kas yra sandaugos ir koeficiento taisyklė?

The Produkto taisyklė sako, kad vedinys iš a produktas iš dviejų funkcijų yra pirmoji funkcija padauginta iš antrosios funkcijos išvestinės ir antroji funkcija padauginta iš pirmosios funkcijos išvestinė.

Kas yra skaičiavimo galios taisyklė?

The galios taisyklė skaičiavime yra gana paprasta taisyklė kuri padeda rasti kintamojo, pakelto į a, išvestinę galia , pvz.: x^5, 2x^8, 3x^(-3) arba 5x^(1/2). Viskas, ką jums reikia padaryti, tai paimti eksponentą, padauginti jį iš koeficiento (skaičiaus prieš x) ir sumažinti rodiklį 1.

Rekomenduojamas: